
Scripting on aRTist

March 20, 2023

1 Introduction

The aRTist GUI is developed in Tcl/Tk (www.tcl.tk) and comes with an internal command line console. The
console is primarily meant for providing the user with operational output, execution history, and debugging
information. Additionally it can be used to enter commands.

2 aRTist Console

The console (a.k.a. aRTist console/Tcl console) can be opened from the Tools menu (Tools⇒Show Console).
It can be used to execute all the commands embody aRTist's functionality, but also general Tcl commands,
and commands of the underlying operating system:

% ::aRTist::GetVersion aRTist command to show the version number. More information about available
aRTist commands can be found in the API description.

% glob * Tcl command to show all contents of a directory. For Tcl/Tk commands see https://www.tcl.
tk/man/tcl8.6/TclCmd/contents.html and https://wiki.tcl-lang.org/.

% dir Command (Windows Command Prompt) to list the contents of a directory.

With the command ::aRTist::dock .console, the console window can be docked to the main window like
a module window.

3 TCL scripts

Console commands can be entered manually and will interpreted line by line. To prepare a set of com-
mands or whole algorithms they can be saved in �les. So called Tcl scripts (text �les of Tcl syntax) are
supported by the general �le handling in aRTist. Consequently, script �les can be opened directly from
the File menu (File⇒Open ...), or by Drag & Drop on the aRTist GUI. The scripts content will be encap-
sulated in a Namespace �External� to prevent unintentional interference with the aRTist code (a script's
procedure/variable dummy has to be addressed ::External::dummy in aRTist).

4 Remote Control

The command ::RemoteControl::Enable (Tools⇒Enable remote access) starts o�ering a TCP socket (de-
fault: localhost:3658) for remote access to the aRTist console. The command ::RemoteControl::CloseServer
shuts down this server socket. The command ::RemoteControl::Status shows the actual connectivity. The
socket can be con�gured from the Advanced tab of the settings (Tools⇒Settings...).

Remote access

The aRTist console can be accessed by a telnet client application connecting to the activated socked, e.g.
command line '# telnet localhost:3658'. While Windows Command Prompt telnet client seams not to
work, CYGWIN/Linux telnet or PuTTY are nice clients for testing.

There is also a single-�le executable of a Tcl console: tkcon-2.5.exe1. This provides the look & feel of the
aRTist console in a separated application (the aRTist console is a integrated Tkcon2). With Tkcon the con-
nection to aRTist can be established from the Console menu (Console⇒Attach To ...⇒Socket⇒Create Con-
nection).

1available at http://wintcltk.sourceforge.net/tkwrap.html#tkcon
2wiki.tcl.tk/1878

1

http://www.tcl.tk
https://www.tcl.tk/man/tcl8.6/TclCmd/contents.html
https://www.tcl.tk/man/tcl8.6/TclCmd/contents.html
https://wiki.tcl-lang.org/
http://wintcltk.sourceforge.net/tkwrap.html#tkcon
http://wiki.tcl.tk/1878

5 Selected commands

5.1 Arranging the virtual setup

The virtual setup is de�ned by an assembly list of geometrical objects (source, detector, parts) referenced
by part IDs. A

� Positioning

The position of parts (objects of the assembly list) refers to the center of the bounding box in world
coordinates. The center of the bounding box is as well the origin of the part's local coordinate system.
The parts have an additional reference position acting as rotation center.

� Get position of part by ::PartList::Invoke $PartID GetPosition

� Set position of part by ::PartList::Invoke $PartID SetPosition $X $Y $Z, where $X/Y/Z

are the X, Y, and Z values in millimeters.

� Get reference position of part by ::PartList::Invoke $PartID GetRefPos

� Set reference position of part by ::PartList::Invoke $PartID SetRefPos $X $Y $Z, where
$X/Y/Z are the X, Y, and Z values in millimeters.

� Shift a part by ::PartList::Invoke $PartID Translate $System $X $Y $Z, where $System

is the coordinate system (world, or object). The reference position is shifted as well.

� Orientation

The orientation values de�ne the extrinsically rotations about axes at center of bounding box (Position).
The rotations are performed in the order: Y, X, Z. The rotations are right-handed.

� Get orientation of part by ::PartList::Invoke $PartID GetOrientation

� Set orientation of part by ::PartList::Invoke $PartID SetOrientation $X $Y $Z, where
$X/Y/Z are angular values around X, Y, and Z axis in degrees.

� Rotate a part by ::PartList::Invoke $PartID Rotate $System $Alpha $X $Y $Z, where $System
is the coordinate system (world, or object). $Alpha is the rotation angle in degrees. The rotation
axis is de�ned by the part's reference position and direction $X $Y $Z.

� Rotate a part with special rotation center by ::PartList::Invoke $PartID Rotate global

$Alpha $X $Y $Z $CX $CY $CZ, where $CX/CY/CZ is the rotation center. Hint: This command
is only de�ned for rotations on global coordinate axes.

� Sizeing

� Get size of part by ::PartList::Invoke $PartID GetSize

� Set size of part by ::PartList::Invoke $PartID SetSize $Sx $Sy $Sz, where $Sx/y/z are
the X, Y, and Z values in Millimeters.

� Scale part by ::PartList::Invoke $PartID Scale $System $X $Y $Z, where $System is the
coordinate system (world, or object), and $X/Y/Z are the scaling factors.

� Get the Cartesian min/max values (bounding box) of part by ::PartList::Invoke $PartID

GetBounds

� Group transformations

If ::PartList::Invoke command is called with a list of part IDs, it will treat all this parts in the
same way as separated calls with all the single IDs. The parameter for the part ID can consists of
one or more part IDs (list of real part IDs), or the words 'parts' (all parts in the assembly list), 'all'
(all parts including source and detector), and 'selection' (all selected parts). Hint: To treat a group of
pats with one Invoke command may not be useful in all cases. Di�erent reference positions or local
coordinates may block to treat parts as a group.

Examples (Only �world� transformations are used, because the parts could have di�ering local coordi-
nate directions.):

� Translate all parts by command::PartList::Invoke parts Translate world $X $Y $Z

� Rotate tow parts (with ID 1 and 4) for 45° in X around the global origin by command::PartList::Invoke

{1 4} Rotate world 45 1 0 0 {0 0 0}

� Material

2

� Set material of part by command::PartList::Set $PartID Material $Mat, where $Mat is an valid
material name.

� Visibility

� Activate/deactivate a part by command ::PartList::Set $PartID Visible on, or ::PartList::Set
$PartID Visible off

5.2 Source properties

� Source in virtual scene:

� Get/set the position of the source in Millimeter of world coordinates:
command Source GetPosition

command Source SetPosition <X> <Y> <Z>

Hint: This equal (see 5.1) to: command::PartList::Invoke S GetPosition

� Get/set the orientation:
command Source GetOrientation

command Source SetOrientation <X> <Y> <Z>

� Get/set the size, the extent of the detector plane in Millimeter. The Z component is mandatory
but without e�ect. If the size does not �t in the pixel grid, it will be reduzed to the next pixel
bounary.
command Source GetSize

command Source SetSize <X> <Y> <Z>

� Source spectrum:

� A saved spectra can be loaded by command::FileIO::OpenAny [PathToSpectrumFile]

� A tube spectra can be generated by command::XSource::ComputeSpectrum , where the parameters
come from the following variables:

* Xsource(AngleIn)

* Xsource(FilterMaterial)

* Xsource(FilterThickness)

* Xsource(Resolution)

* Xsource(TargetAngle)

* Xsource(TargetMaterial)

* Xsource(TargetThickness)

* Xsource(Transmission)

* Xsource(Tube)

* Xsource(Voltage)

* Xsource(WindowMaterial)

* Xsource(WindowThickness)

Call command::XSource::CheckSpectrum afterwarts, to potentially reduce the number of bins in
the spectra to a maximum of 128 bins.

� Exposure:

� The variable for the exposure value (mA or GBq) is variable::Xsource(Exposure)

� Focal Spot:

� Spot type can be set by variable::Xsetup(SourceSampling),where valid values are:

* �point� for single point source,

* �<n>� (single number) for a unregular grid of <n> of source points Poison Disk distributed
over the spot extent.

* �<m>x<n>� (tow numbers deliminated by 'x') for a regular grid of <m> by <n> source
points.

� The spot size variables are variable::Xsetup_private(SGSx) and variable::Xsetup_private(SGSy)

� A spot pro�le image can be provided with ::XSouce::LoadSpot <file name> and deleted with
::XSouce::ClearSpot .

3

5.3 Scattering

� Parameters

� Mode variable::Xscattering(Mode) ... Scattering mode. Possible values are: off, build-up

factor, external file, McRay.

� reference point variable::Xscattering(AutoBase) ... This de�nes the automatic reference point.
Possible values are: off min max center picked.

� picked position variable::Xscattering(PickedPosX)and variable::Xscattering(PickedPosY) ... De-
�ne the reference pixel.

� build up variable::Xscattering(Buildup)... Build-up factor.

� McRay

� Load results as external �le variable::Xscattering(McRayInitFile)... Use Monte Carlo result to
set up scatter image for subsequent runs (on: 1, o�: 0). If activated, it will switch to scattering
mode �external file� for next simulation run.

� Use original image size variable::Xscattering(ResampleMC)... Don't reduce image size for Monte
Carlo calculation (on: 1, o�: 0). It is recommended to deactivate this option (set to �0�)..

� Set defaults variable::Xscattering(ResetMcRay)... Ignore manual settings in McRay module (on:
1, o�: 0). It is recommended to activate this option (set to �1�).

� # of photons variable::Xscattering(nPhotons)... Number of photon trajectories to start.

5.4 Run a simulation

� Use command::Engine::StartStopCmd to start a simulation run and display the resulting images (same
as Run button).

� Calling command::Engine::Go <material> will just return a list of resulting images. The optional
paramiter <material> will be ignored in radiography mode. In thickness-map mode, the command
will return a simgle image of the thickness map for the requested material <material>.

5.5 Detector properties

� The detector in the virtual scene:

� Get/set the position of the detector in Millimeter of world coordinates:
command Detector GetPosition

command Detector SetPosition <X> <Y> <Z>

Hint: This equal (see 5.1) to: command::PartList::Invoke D GetPosition

� Get/set the orientation:
command Detector GetOrientation

command Detector SetOrientation <X> <Y> <Z>

� Get/set the size, the extent of the detector plane in Millimeter. The Z component is mandatory
but without e�ect. If the size does not �t in the pixel grid, it will be reduzed to the next pixel
bounary.
command Detector GetSize

command Detector SetSize <X> <Y> <Z>

� Geometry:

�Geometry� here refers to the size, number of pixels, and resolution of the detector image. Since this
is an over-determined system, if one parameter is changed, others have to be updated as well. To do
this in a de�ned way, one of the parameters "Size", "Pixels" or "Resolution" must be selected as the
parameter to be updated automatically:

� variable ::Xsetup_private(DGauto) ... values: �Size�, �Pixel�, �Resolution�, where a quantity of this
type will be adjusted, if a quantity of another type is changed.

The core geometry parameters are listed here:

� variable ::Xsetup_private(DGSx) ... detector size in X, widget name: XSize

� variable ::Xsetup_private(DGSy) ... detector size in Y, widget name: YSize

4

� variable ::Xsetup(DetectorPixelX) ... number of pixels in X, widget name: XPixel

� variable ::Xsetup(DetectorPixelY) ... number of pixels in Y, widget name: YPixel

� variable ::Xsetup_private(DGdx) ... pixel size in X, widget name: XResolution

� variable ::Xsetup_private(DGdy) ... pixel size in Y, widget name: YResolution

� variable ::Xsetup(SquarePixel) ... force equel pixel size in X and Y, widget name: not needed

After changing one of the listed parameters the command ::XDetector::UpdateGeometry needs to be
called with the respective widget name, e.g.:

set ::Xsetup(DetectorPixelX) 100; ::XDetector::UpdateGeometry ::XDetector::widget(XPixel)

Hint: If you chang one quantity, variable ::Xsetup_private(DGauto) must be set to a di�erent type of
quantity. Atherwise ::XDetector::UpdateGeometry will not work properly.

An additional parameter controls the sampling per pixel as an anti-aliasing measure:

� variable ::Xsetup(DetectorSampling) ... values: �source dependent� (same sampling as for focal spot),
�X� (Poisson disk sampling with X points), �XxY� (regular grid)

� Exposure

Some of the parameters may are deactivated depending on the exposure/�reference point� mode. De-
activated parameters do not in�uence the simulation, or will be overwritten at an simulation run.
To keep the GUI self-consistent it is needed to call [command]::XDetector::ExposureModeChange after
changing [variable]::Xdetector(AutoD). But the functionality is not depending on it.

� reference point [variable]::Xdetector(AutoD) ... This de�nes the automatic exposure mode. Pos-
sible values are: off min max center picked. If not �o��, the exposure time is determined by
the program to reach a pixel value of �set to� at �picked position�. To enable a explicitly de�ned
exposure time use �o�� here.

� picked position [variable]::Xdetector(AutoDPosX)and [variable]::Xdetector(AutoDPosY) ... De�ne
the pixel position for automatic exposure.

� set to [variable]::Xdetector(RefGV) ... Optical density value or gray value desired at reference
point.

� exposure time [variable]::Xdetector(Scale) ... Exposure time in seconds.

� number of frames [variable]::Xdetector(NrOfFrames) ... Number of frames to average.

� Parameter Override

� unsharpness [variable]::Xdetector(Unsharpness) ... Detector unsharpness in Millimeter. Active
if [variable]::Xdetector(UnsharpnessOn) is �1�, only.

� long range unsharpness [variable]::Xdetector(LRUnsharpness) and {variable]::Xdetector(LRRatio)

... Detector long range unsharpness in Millimeter and ratio in %. Active if [variable]::Xdetector(UnsharpnessOn)
is �1�, only.

� noise factor [variable]::Xdetector(NoiseFactor) ... Nonlinear multiplier to adjust the noise model
of the chosen detector characteristic. Active if [variable]::Xdetector(NoiseFactorOn) is �1�, only.

5.6 Modules

Modules are extentions of aRTist using a common infrastructure. Commands for module managemant are:

::Mouldes::GetAll Returns a list of all evailable modules.

::Modules::Available <module> Checks if the module is present. Returns 1 or 0.

::Modules::Run <module> Starts a module. This typically opens a GUI of the module.

::Modules::Invoke <module> <command> [<arguments>] Calls a subroutine of the module.

::Modules::Set <module> <variable> [<value>] Access a variable of module namespace. If no value is
speci�ed, the actual value is returned.

5

5.6.1 CtScan

Subroutines

::Modules::Run CtScan Starts/initializes the module.

::Modules::Invoke CtScan Execute Starts the CT scan simulation.

Variables

CtScan Array variable with all scan parameters. Use ::Modules::Set CtScan CtScan to show all array
members.

6

	Introduction
	aRTist Console
	TCL scripts
	Remote Control
	Selected commands
	Arranging the virtual setup
	Source properties
	Scattering
	Run a simulation
	Detector properties
	Modules
	CtScan

